A Model Of Parallel Kinematics For Machine Calibration

Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project[WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large scale components for construc...

Full description

Saved in:
Bibliographic Details
Main Authors: Hansen, Hans Norgaard, Christensen, Simon Klove, Nielsen, Jakob Skov, Pedersen, David Bue, Nielsen, Morten Baek
Other Authors: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016)
Format: Conference or Workshop Item
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/84421
http://hdl.handle.net/10220/41805
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project[WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large scale components for construction engineering applications. The parallel kinematics of a linear delta robot has the potential to out-complete Cartesian point-based deposition systems with respect of acceleration- and thus repositioning speeds since the primary movable mass in these types of systems can be kept to a minimum. The aim of this research is to address one of the primary disadvantages to parallel kinematics systems. Calibration and Geometric validation. Calibration of a delta robot can be a source of frustration. This research aim to provide the operator with a strong tool for easing this task. The kinematics and calibration of delta robots, in particular, are less researched than that of traditional Cartesian robots, for which tried-and-true methods for calibrating are well known. A forwards and reverse virtual model of a delta robot has been developed in order to decompose the different types of geometrical errors into 6 elementary cases. Deliberate introduction of errors to the virtual machine has subsequently allowed for the generation of deviation plots that can be used as a strong tool for the identification and correction of geometrical errors on a physical machine tool.