Quantifying Mechanical Properties Of Material Extrusion Fabricated Lattice Structures Based On Semi-rigid Joint Frame Formulation
This paper presents a new numerical modeling scheme based on the semi-rigid joint frame element formulation for lattice structures fabricated using material extrusion. The proposed scheme has two main elements. First, a modified semi-rigid joint frame element is formulated in order to model strut...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Online Access: | https://hdl.handle.net/10356/84591 http://hdl.handle.net/10220/41856 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper presents a new numerical modeling scheme based on the semi-rigid joint
frame element formulation for lattice structures fabricated using material extrusion. The proposed
scheme has two main elements. First, a modified semi-rigid joint frame element is formulated in
order to model struts in lattice structures. Second, a voxel model is developed by simulating the
material deposition process; the resulting model geometry is similar to that of the fabricated part.
Using this model, effective structural parameters, such as effective strut and joint size and
effective joint stiffness, can be computed. Parametric studies were conducted to examine
manufacturing effects on the structural parameters. Estimated mechanical properties utilizing the
proposed modeling approach are compared with tensile test results for three types of lattice
structures. Results demonstrate good predictive capability of the proposed modeling approach. |
---|