Niching particle swarm optimization with local search for multi-modal optimization
Multimodal optimization is still one of the most challenging tasks for evolutionary computation. In recent years, many evolutionary multi-modal optimization algorithms have been developed. All these algorithms must tackle two issues in order to successfully solve a multi-modal problem: how to identi...
Saved in:
Main Authors: | Qu, B. Y., Liang, J. J., Suganthan, P. N. |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/84801 http://hdl.handle.net/10220/13559 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Dynamic multi-swarm particle swarm optimization for multi-objective optimization problems
由: Niu, B., et al.
出版: (2013) -
A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
由: Nasir, Md., et al.
出版: (2013) -
Population topologies for particle swarm optimization and differential evolution
由: Lynn, Nandar, et al.
出版: (2020) -
Major advances in particle swarm optimization: theory, analysis, and application
由: Houssein, Essam H., et al.
出版: (2022) -
Real-parameter optimization with particle swarm optimizer and differential evolution
由: Zhao, Shizheng
出版: (2011)