Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization
In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studi...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85023 http://hdl.handle.net/10220/25204 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-85023 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-850232020-09-21T11:32:27Z Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization Akhondi, Ebrahim Wu, Bing Sun, Shuyang Marxer, Brigit Lim, Weikang Gu, Jun Liu, Linbo Burkhardt, Michael McDougald, Diane Pronk, Wouter Fane, Anthony G. School of Civil and Environmental Engineering School of Electrical and Electronic Engineering Nanyang Environment and Water Research Institute Singapore Membrane Technology Centre Singapore Centre for Environmental Life Sciences Engineering DRNTU::Engineering::Environmental engineering::Water treatment In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m2 h (21 ± 1 °C, 40 mbar) to 7.3 L/m2 h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the permeate was not be reduced, possibly because some microbial species (e.g. algae) could convert CO2 into organic substances. To further improve the removal efficiency of the organic carbon, combining carrier biofilm processes with a submerged GDM filtration system is proposed. EDB (Economic Devt. Board, S’pore) Accepted version 2015-03-09T09:09:30Z 2019-12-06T15:55:45Z 2015-03-09T09:09:30Z 2019-12-06T15:55:45Z 2015 2015 Journal Article Akhondi, E., Wu, B., Sun, S., Marxer, B., Lim, W., Gu, J., et al. (2015). Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization. Water research, 70, 158-173. 0043-1354 https://hdl.handle.net/10356/85023 http://hdl.handle.net/10220/25204 10.1016/j.watres.2014.12.001 en Water research © 2014 Elsevier Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Water Research, Elsevier Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.watres.2014.12.001]. application/pdf application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Environmental engineering::Water treatment |
spellingShingle |
DRNTU::Engineering::Environmental engineering::Water treatment Akhondi, Ebrahim Wu, Bing Sun, Shuyang Marxer, Brigit Lim, Weikang Gu, Jun Liu, Linbo Burkhardt, Michael McDougald, Diane Pronk, Wouter Fane, Anthony G. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
description |
In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m2 h (21 ± 1 °C, 40 mbar) to 7.3 L/m2 h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the permeate was not be reduced, possibly because some microbial species (e.g. algae) could convert CO2 into organic substances. To further improve the removal efficiency of the organic carbon, combining carrier biofilm processes with a submerged GDM filtration system is proposed. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Akhondi, Ebrahim Wu, Bing Sun, Shuyang Marxer, Brigit Lim, Weikang Gu, Jun Liu, Linbo Burkhardt, Michael McDougald, Diane Pronk, Wouter Fane, Anthony G. |
format |
Article |
author |
Akhondi, Ebrahim Wu, Bing Sun, Shuyang Marxer, Brigit Lim, Weikang Gu, Jun Liu, Linbo Burkhardt, Michael McDougald, Diane Pronk, Wouter Fane, Anthony G. |
author_sort |
Akhondi, Ebrahim |
title |
Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
title_short |
Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
title_full |
Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
title_fullStr |
Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
title_full_unstemmed |
Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
title_sort |
gravity-driven membrane filtration as pretreatment for seawater reverse osmosis : linking biofouling layer morphology with flux stabilization |
publishDate |
2015 |
url |
https://hdl.handle.net/10356/85023 http://hdl.handle.net/10220/25204 |
_version_ |
1681056585081683968 |