Semi-supervised distance metric learning based on local linear regression for data clustering
Distance metric plays an important role in many machine learning tasks. The distance between samples is mostly measured with a predefined metric, ignoring how the samples distribute in the feature space and how the features are correlated. This paper proposes a semi-supervised distance metric learni...
Saved in:
Main Authors: | Yu, Jun., Wang, Meng., Liu, Yun., Zhang, Hong. |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/85068 http://hdl.handle.net/10220/13661 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Semi-supervised distance metric learning for collaborative image retrieval and clustering
由: HOI, Steven C. H., et al.
出版: (2010) -
Learning Bregman distance functions for semi-supervised clustering
由: Wu, Lei., et al.
出版: (2013) -
A non-linear semi-supervised learning framework for distance metric learning
由: Ratthachat Chatpatanasiri
出版: (2012) -
A non-linear semi-supervised learning framework for distance metric learning
由: Ratthachat Chatpatanasiri
出版: (2009) -
Learning Bregman distance functions for semi-supervised clustering
由: Wu, Lei, et al.
出版: (2012)