A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction

The efficiency of the water electrolysis process is restricted by the sluggish kinetics of the oxygen evolution reaction (OER). Developing efficient catalysts and their synthesis methods is highly desired to improve the kinetics of the OER and therefore the overall efficiency of the water electrolys...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Zhichuan Jason, Nguyen, Tam D., Scherer, Günther G.
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/85618
http://hdl.handle.net/10220/43757
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The efficiency of the water electrolysis process is restricted by the sluggish kinetics of the oxygen evolution reaction (OER). Developing efficient catalysts and their synthesis methods is highly desired to improve the kinetics of the OER and therefore the overall efficiency of the water electrolysis. In this report, we present a facile wet-chemical method for synthesizing IrO2 and RuO2 nanoparticles (NPs) for the OER. The nanoparticles were synthesized by reducing metal chlorides in ethylene glycol in the presence of polyvinylpyrrolidone, followed by annealing in air. The particle size was controlled by adjusting the annealing temperature. The activity of IrO2 and RuO2 NPs supported on carbon black was investigated by cyclic voltammetry (CV) in alkaline (0.1 M KOH) electrolyte. As-synthesized IrO2 and RuO2 NPs showed high OER activity. The IrO2 NPs exhibited a specific activity of up to 3.5 (±1.6) μA/cm2oxide at 1.53 V (vs. RHE), while the RuO2 NPs achieved a value of 124.2 (±8) μA/cm2oxide. Moreover, RuO2 NPs showed a mass activity for OER, up to 102.6 (±10.5) A/goxide at 1.53 V (vs. RHE), which represents the highest value reported in the literature to date.