Structural modelling of the DNAJB6 oligomeric chaperone shows a peptide-binding cleft lined with conserved S/T-residues at the dimer interface

The remarkably efficient suppression of amyloid fibril formation by the DNAJB6 chaperone is dependent on a set of conserved S/T-residues and an oligomeric structure, features unusual among DNAJ chaperones. We explored the structure of DNAJB6 using a combination of structural methods. Lysine-specific...

Full description

Saved in:
Bibliographic Details
Main Authors: Söderberg, Christopher A. G., Månsson, Cecilia, Bernfur, Katja, Rutsdottir, Gudrun, Härmark, Johan, Rajan, Sreekanth, Al-Karadaghi, Salam, Rasmussen, Morten, Höjrup, Peter, Hebert, Hans, Emanuelsson, Cecilia
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87375
http://hdl.handle.net/10220/45394
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The remarkably efficient suppression of amyloid fibril formation by the DNAJB6 chaperone is dependent on a set of conserved S/T-residues and an oligomeric structure, features unusual among DNAJ chaperones. We explored the structure of DNAJB6 using a combination of structural methods. Lysine-specific crosslinking mass spectrometry provided distance constraints to select a homology model of the DNAJB6 monomer, which was subsequently used in crosslink-assisted docking to generate a dimer model. A peptide-binding cleft lined with S/T-residues is formed at the monomer-monomer interface. Mixed isotope crosslinking showed that the oligomers are dynamic entities that exchange subunits. The purified protein is well folded, soluble and composed of oligomers with a varying number of subunits according to small-angle X-ray scattering (SAXS). Elongated particles (160 × 120 Å) were detected by electron microscopy and single particle reconstruction resulted in a density map of 20 Å resolution into which the DNAJB6 dimers fit. The structure of the oligomer and the S/T-rich region is of great importance for the understanding of the function of DNAJB6 and how it can bind aggregation-prone peptides and prevent amyloid diseases.