Multicell migration tracking within angiogenic networks by deep learning-based segmentation and augmented Bayesian filtering

Cell migration is a key feature for living organisms. Image analysis tools are useful in studying cell migration in three-dimensional (3-D) in vitro environments. We consider angiogenic vessels formed in 3-D microfluidic devices (MFDs) and develop an image analysis system to extract cell behaviors f...

Full description

Saved in:
Bibliographic Details
Main Authors: Ong, Sharon Lee-Ling, Dauwels, Justin, Asada, H. Harry, Wang, Mengmeng
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87775
http://hdl.handle.net/10220/45505
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Cell migration is a key feature for living organisms. Image analysis tools are useful in studying cell migration in three-dimensional (3-D) in vitro environments. We consider angiogenic vessels formed in 3-D microfluidic devices (MFDs) and develop an image analysis system to extract cell behaviors from experimental phase-contrast microscopy image sequences. The proposed system initializes tracks with the end-point confocal nuclei coordinates. We apply convolutional neural networks to detect cell candidates and combine backward Kalman filtering with multiple hypothesis tracking to link the cell candidates at each time step. These hypotheses incorporate prior knowledge on vessel formation and cell proliferation rates. The association accuracy reaches 86.4% for the proposed algorithm, indicating that the proposed system is able to associate cells more accurately than existing approaches. Cell culture experiments in 3-D MFDs have shown considerable promise for improving biology research. The proposed system is expected to be a useful quantitative tool for potential microscopy problems of MFDs.