Integrated condition monitoring and prognosis method for incipient defect detection and remaining life prediction of low speed slew bearings

This paper presents an application of multivariate state estimation technique (MSET), sequential probability ratio test (SPRT) and kernel regression for low speed slew bearing condition monitoring and prognosis. The method is applied in two steps. Step (1) is the detection of the incipient slew bear...

全面介紹

Saved in:
書目詳細資料
Main Authors: Caesarendra, Wahyu, Tjahjowidodo, Tegoeh, Kosasih, Buyung, Tieu, Anh Kiet
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/88423
http://hdl.handle.net/10220/45773
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This paper presents an application of multivariate state estimation technique (MSET), sequential probability ratio test (SPRT) and kernel regression for low speed slew bearing condition monitoring and prognosis. The method is applied in two steps. Step (1) is the detection of the incipient slew bearing defect. In this step, combined MSET and SPRT is used with circular-domain kurtosis, time-domain kurtosis, wavelet decomposition (WD) kurtosis, empirical mode decomposition (EMD) kurtosis and the largest Lyapunov exponent (LLE) feature. Step (2) is the prediction of the selected features’ trends and the estimation of the remaining useful life (RUL) of the slew bearing. In this step, kernel regression is used with time-domain kurtosis, WD kurtosis and the LLE feature. The application of the method is demonstrated with laboratory slew bearing acceleration data.