Integrated condition monitoring and prognosis method for incipient defect detection and remaining life prediction of low speed slew bearings
This paper presents an application of multivariate state estimation technique (MSET), sequential probability ratio test (SPRT) and kernel regression for low speed slew bearing condition monitoring and prognosis. The method is applied in two steps. Step (1) is the detection of the incipient slew bear...
محفوظ في:
المؤلفون الرئيسيون: | Caesarendra, Wahyu, Tjahjowidodo, Tegoeh, Kosasih, Buyung, Tieu, Anh Kiet |
---|---|
مؤلفون آخرون: | School of Mechanical and Aerospace Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/88423 http://hdl.handle.net/10220/45773 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Parsimonious network based on a fuzzy inference system (PANFIS) for time series feature prediction of low speed slew bearing prognosis
بواسطة: Caesarendra, Wahyu, وآخرون
منشور في: (2023) -
A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing
بواسطة: Caesarendra, Wahyu, وآخرون
منشور في: (2018) -
An online condition monitoring system implemented an internet connectivity and FTP for low speed slew bearing
بواسطة: Caesarendra, W., وآخرون
منشور في: (2018) -
An Ensemble of Kernel Ridge Regression for Multi-class Classification
بواسطة: Suganthan, Ponnuthurai Nagaratnam, وآخرون
منشور في: (2018) -
Robust Nonparametric Regression Using Kernel Smoothing
بواسطة: ZHANG XIAOE
منشور في: (2010)