Parametric quintic spline approach for two-dimensional fractional sub-diffusion equation
In this paper, we shall tackle the numerical treatment of two-dimensional fractional sub-diffusion equations using parametric quintic spline. It is shown that this numerical scheme is solvable, stable and convergent with high accuracy which improves some earlier work. Finally, we carry out an experi...
Saved in:
Main Authors: | Li, Xuhao, Wong, Patricia Jia Yiing |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/88659 http://hdl.handle.net/10220/45900 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline
由: Li, Xuhao, et al.
出版: (2021) -
Quintic non-polynomial spline for time-fractional nonlinear Schrödinger equation
由: Ding, Qinxu, et al.
出版: (2021) -
A non-polynomial numerical scheme for fourth-order fractional diffusion-wave model
由: Li, Xuhao, et al.
出版: (2020) -
Non-polynomial spline approach in two-dimensional fractional sub-diffusion problems
由: Li, Xuhao, et al.
出版: (2021) -
Nonpolynomial numerical scheme for fourth-order fractional sub-diffusion equations
由: Li, Xuhao, et al.
出版: (2018)