Multiple-Vector Model Predictive Power Control of Four-Switch Three-Phase Rectifiers with Capacitor Voltage Balancing

Model-predictive power control (MPPC) takes the switching nonlinearity of power converters and system constraints into consideration. It is a promising control technique for three-phase four-switch rectifiers (TPFSRs) because capacitor-voltage-balancing control and instantaneous power control can be...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhou, Dehong, Li, Xiaoqiang, Tang, Yi
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88772
http://hdl.handle.net/10220/44727
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Model-predictive power control (MPPC) takes the switching nonlinearity of power converters and system constraints into consideration. It is a promising control technique for three-phase four-switch rectifiers (TPFSRs) because capacitor-voltage-balancing control and instantaneous power control can be simultaneously designed for this type of power converters. However, since only one switching vector is allowed in each control interval, conventional MPPC (C-MPPC) may lead to significant output power ripples that can severely degrade system power quality. This is particularly true for TPFSRs due to the limited number of switching states as well as the constraint imposed by the capacitor-voltage-balancing control. To improve the performance of TPFSRs, this paper proposes a multiple-vector MPPC scheme, which can minimize active power and reactive power ripples and achieve capacitor voltage balancing with a constant switching frequency. An equivalent zero-voltage vector model and a capacitor-voltage-balancing model are derived to implement the proposed control scheme. Comparative experimental results are presented to demonstrate the superiority of the proposed control scheme over the C-MPPC.