One-stop measurement model for fast and accurate tensor display characterization

Many light field displays are fundamentally different from other displays in that they do not have quantized pixels, quantized angular outputs, or a physical screen position, which can make definitions and characterization problematic. We have determined that it is more appropriate to express the sp...

Full description

Saved in:
Bibliographic Details
Main Authors: Surman, Phil, Wang, Shizheng, Yuan, Junsong, Zheng, Yuanjin
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/88938
http://hdl.handle.net/10220/48347
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Many light field displays are fundamentally different from other displays in that they do not have quantized pixels, quantized angular outputs, or a physical screen position, which can make definitions and characterization problematic. We have determined that it is more appropriate to express the spatial resolution in terms of spatial cutoff frequency rather than a physical distance as in the case of a display with actual quantized pixels. This concept is then extended to also encompass angular resolution. The technique exploits the fact that when spatial resolution of a sinusoidal grating pattern is halved, its contrast ratio is reduced by a known proportion. An improved model, based on an earlier design concept, has been developed. It not only can be used to measure spatial and angular cutoff frequencies, but also can enable comprehensive characterization of the display. This model provides fast, simple measurement with good accuracy. It does not use special equipment or require time-consuming subjective evaluations. Using the model to characterize images in a rapid, accurate manner validates the effectiveness of this technique.