Development and validation of a soft robotic exosuit for assistance of the upper limbs
Robots have been used in physical rehabilitation to increase the intensity of practice and relieve therapists from the demanding task of manually assisting the patient. Robot-assisted therapy has shown encouraging results, comparable to the ones achieved with traditional therapy, while allowing grea...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/88973 http://hdl.handle.net/10220/48617 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-88973 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-889732020-11-01T04:55:24Z Development and validation of a soft robotic exosuit for assistance of the upper limbs Xiloyannis, Michele Chen Shen-Hsing Annabel Dino Accoto Interdisciplinary Graduate School (IGS) Robotics Research Centre Lorenzo Masia DRNTU::Engineering::Mechanical engineering Robots have been used in physical rehabilitation to increase the intensity of practice and relieve therapists from the demanding task of manually assisting the patient. Robot-assisted therapy has shown encouraging results, comparable to the ones achieved with traditional therapy, while allowing greater patient compliance and a quantitative, more accurate monitoring of the subject’s performance. Unfortunately, currently available robotic platforms are not logistically capable of following the patient after discharge from physical therapy. Patients go back home, training stops and their conditions plateau or even deteriorate. The recent introduction of soft materials to design robotic devices has hada significant impact on assistive technologies. Wearable robots made of fabric and elastomers, also known as exosuit, are a promising way of delivering power to the human body, with potential applications in the medical field. Being lightweight, ergonomic and low power-demanding, exosuits are an attractive tool to provide assistance, not only in clinical settings but also in daily life. In this thesis, we present the development and evaluation of a wearable exosuit for assistance of the elbow joint and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to move cooperatively with its wearer. We examine the feasibility of using the device to assist human movement by testing its effect on the kinetics and kinematics of healthy subjects. Doctor of Philosophy 2019-06-10T07:27:44Z 2019-12-06T17:14:58Z 2019-06-10T07:27:44Z 2019-12-06T17:14:58Z 2019 Thesis Xiloyannis, M. (2019). Development and validation of a soft robotic exosuit for assistance of the upper limbs. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/88973 http://hdl.handle.net/10220/48617 10.32657/10220/48617 en 166 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering |
spellingShingle |
DRNTU::Engineering::Mechanical engineering Xiloyannis, Michele Development and validation of a soft robotic exosuit for assistance of the upper limbs |
description |
Robots have been used in physical rehabilitation to increase the intensity of practice and relieve therapists from the demanding task of manually assisting the patient. Robot-assisted therapy has shown encouraging results, comparable to the ones achieved with traditional therapy, while allowing greater patient compliance and a quantitative, more accurate monitoring of the subject’s performance. Unfortunately, currently available robotic platforms are not logistically capable of following the patient after discharge from physical therapy. Patients go back home, training stops and their conditions plateau or even deteriorate.
The recent introduction of soft materials to design robotic devices has hada significant impact on assistive technologies. Wearable robots made of fabric and elastomers, also known as exosuit, are a promising way of delivering power to the human body, with potential applications in the medical field. Being lightweight, ergonomic and low power-demanding, exosuits are an attractive tool to provide assistance, not only in clinical settings but also in daily life.
In this thesis, we present the development and evaluation of a wearable exosuit for assistance of the elbow joint and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to move cooperatively with its wearer. We examine the feasibility of using the device to assist human movement by testing its effect on the kinetics and kinematics of healthy subjects. |
author2 |
Chen Shen-Hsing Annabel |
author_facet |
Chen Shen-Hsing Annabel Xiloyannis, Michele |
format |
Theses and Dissertations |
author |
Xiloyannis, Michele |
author_sort |
Xiloyannis, Michele |
title |
Development and validation of a soft robotic exosuit for assistance of the upper limbs |
title_short |
Development and validation of a soft robotic exosuit for assistance of the upper limbs |
title_full |
Development and validation of a soft robotic exosuit for assistance of the upper limbs |
title_fullStr |
Development and validation of a soft robotic exosuit for assistance of the upper limbs |
title_full_unstemmed |
Development and validation of a soft robotic exosuit for assistance of the upper limbs |
title_sort |
development and validation of a soft robotic exosuit for assistance of the upper limbs |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/88973 http://hdl.handle.net/10220/48617 |
_version_ |
1683493907122356224 |