Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces
Chalcogenides—alloys based on group-16 ‘chalcogen’ elements (sulfur, selenium, and tellurium) covalently bound to ‘network formers’ such as arsenic, germanium, antimony, and gallium—have a variety of technologically useful properties, including infrared transparency, high optical nonlinearity, photo...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89237 http://hdl.handle.net/10220/46139 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Chalcogenides—alloys based on group-16 ‘chalcogen’ elements (sulfur, selenium, and tellurium) covalently bound to ‘network formers’ such as arsenic, germanium, antimony, and gallium—have a variety of technologically useful properties, including infrared transparency, high optical nonlinearity, photorefractivity and readily induced, reversible, non-volatile structural phase switching. Such phase-change materials are of enormous interest in the fields of plasmonics and nanophotonics. However, in such applications, the fact that some chalcogenides accrue plasmonic properties in the transition from an amorphous to a crystalline state, i.e., the real part of their relative permittivity becomes negative, has gone somewhat unnoticed. Indeed, one of the most commercially important chalcogenide compounds, germanium antimony telluride (Ge2:Sb2:Te5 or GST), which is widely used in rewritable optical and electronic data storage technologies, presents this behavior at wavelengths in the near-ultraviolet to visible spectral range. In this work, we show that the phase transition-induced emergence of plasmonic properties in the crystalline state can markedly change the optical properties of sub-wavelength-thickness, nanostructured GST films, allowing for the realization of non-volatile, reconfigurable (e.g., color-tunable) chalcogenide metasurfaces operating at visible frequencies and creating opportunities for developments in non-volatile optical memory, solid state displays and all-optical switching devices. |
---|