Enantioselective 1,2-Anionotropic Rearrangement of Acylsilane through a Bisguanidinium Silicate Ion Pair
Highly enantioselective bisguanidinium-catalyzed tandem rearrangements of acylsilanes are reported. The acylsilanes were activated via an addition of fluoride on the silicon to form a penta-coordinate anionic silicate intermediate. The silicate then underwent alkyl or aryl group migration from the s...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89326 http://hdl.handle.net/10220/44860 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Highly enantioselective bisguanidinium-catalyzed tandem rearrangements of acylsilanes are reported. The acylsilanes were activated via an addition of fluoride on the silicon to form a penta-coordinate anionic silicate intermediate. The silicate then underwent alkyl or aryl group migration from the silicon atom to the neighboring carbonyl carbon atom (1,2-anionotropic rearrangement), followed by [1,2]-Brook rearrangement to provide the secondary alcohols in high yields with excellent enantioselectivities (up to 95% ee). The isolation of an α-silylcarbinol intermediate as well as DFT calculations revealed that the 1,2-anionotropic rearrangement occurred via a bisguanidinium silicate ion pair, which is the stereodetermining step. The chiral center formed is then retained without inversion through the subsequent [1,2]-Brook rearrangement. Crotyl acylsilanes were smoothly transformed into homoallylic linear crotyl alcohols with retention of E/Z geometry, and no branched alcohols were detected. This clearly suggested that the 1,2-anionotropic rearrangement occurred through a three-membered instead of a five-membered transition state. |
---|