Effect of annealing temperature on physical properties of nanostructured TiN/3DG composite

Recently, three-dimensional graphene (3DG) has attracted much attention in many research fields due to its unique structure and considerable properties. In order to expand the range of applications of 3DG, the suitable nanomaterials can be grown on its surface. In this study, titanium nitride (TiN)...

Full description

Saved in:
Bibliographic Details
Main Authors: Dabir, Fatemeh, Sarraf-Mamoory, Rasoul, Loeblein, Manuela, Tsang, Siu Hon, Teo, Edwin Hang Tong
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/89624
http://hdl.handle.net/10220/44999
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Recently, three-dimensional graphene (3DG) has attracted much attention in many research fields due to its unique structure and considerable properties. In order to expand the range of applications of 3DG, the suitable nanomaterials can be grown on its surface. In this study, titanium nitride (TiN) phase was deposited on 3DG porous structure by chemical method. This method contains two steps of immersing 3DG into a solution containing Ti ions and then annealing under ammonia atmosphere. The effect of annealing temperature on type of synthesized phases, their morphology, and stoichiometry was investigated. For this purpose, the samples were annealed at different temperatures (750–900 °C) and analyzed via various techniques. The results showed that increasing annealing temperature results in increased crystallite size and lattice constant, while decreased oxygen content in TiN structure. Annealing at 850 °C resulted in the most stoichiometric composition with titanium/nitrogen atomic ratio of 1.09, which had the lowest electrical resistivity of 0.41 Ω cm and lowest work function of 4.68 eV. After applying TiN, the water contact angle of 3DG (127°) was reduced to lower than 90°. Such TiN/3DG composite can be a promising candidate as an electrode in solar cells.