An atomtronic flux qubit : a ring lattice of Bose–Einstein condensates interrupted by three weak links
We study a physical system consisting of a Bose–Einstein condensate confined to a ring shaped lattice potential interrupted by three weak links. The system is assumed to be driven by an effective flux piercing the ring lattice. By employing path integral techniques, we explore the effective quantum...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/90021 http://hdl.handle.net/10220/46489 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | We study a physical system consisting of a Bose–Einstein condensate confined to a ring shaped lattice potential interrupted by three weak links. The system is assumed to be driven by an effective flux piercing the ring lattice. By employing path integral techniques, we explore the effective quantum dynamics of the system in a pure quantum phase dynamics regime. Moreover, the effects of the density's quantum fluctuations are studied through exact diagonalization analysis of the spectroscopy of the Bose–Hubbard model. We demonstrate that a clear two-level system emerges by tuning the magnetic flux at degeneracy. The lattice confinement, platform for the condensate, is realized experimentally employing a spatial light modulator. |
---|