The role of membrane curvature in nanoscale topography-induced intracellular signaling

Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell–probe coupling efficiency and the sensitivity of biosensors. Although local membranes...

Full description

Saved in:
Bibliographic Details
Main Authors: Lou, Hsin-Ya, Zhao, Wenting, Zeng, Yongpeng, Cui, Bianxiao
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/90260
http://hdl.handle.net/10220/48454
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-90260
record_format dspace
spelling sg-ntu-dr.10356-902602023-12-29T06:51:30Z The role of membrane curvature in nanoscale topography-induced intracellular signaling Lou, Hsin-Ya Zhao, Wenting Zeng, Yongpeng Cui, Bianxiao School of Chemical and Biomedical Engineering Nanostructures Plasma Membrane DRNTU::Engineering::Chemical engineering Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell–probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host–implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior. Accepted version 2019-05-29T07:48:09Z 2019-12-06T17:44:15Z 2019-05-29T07:48:09Z 2019-12-06T17:44:15Z 2018 Journal Article Lou, H.-Y., Zhao, W., Zeng, Y., & Cui, B. (2018). The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Accounts of Chemical Research, 51(5), 1046-1053. doi:10.1021/acs.accounts.7b00594 0001-4842 https://hdl.handle.net/10356/90260 http://hdl.handle.net/10220/48454 10.1021/acs.accounts.7b00594 en Accounts of Chemical Research © 2018 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.accounts.7b00594. 23 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Nanostructures
Plasma Membrane
DRNTU::Engineering::Chemical engineering
spellingShingle Nanostructures
Plasma Membrane
DRNTU::Engineering::Chemical engineering
Lou, Hsin-Ya
Zhao, Wenting
Zeng, Yongpeng
Cui, Bianxiao
The role of membrane curvature in nanoscale topography-induced intracellular signaling
description Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell–probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host–implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
author2 School of Chemical and Biomedical Engineering
author_facet School of Chemical and Biomedical Engineering
Lou, Hsin-Ya
Zhao, Wenting
Zeng, Yongpeng
Cui, Bianxiao
format Article
author Lou, Hsin-Ya
Zhao, Wenting
Zeng, Yongpeng
Cui, Bianxiao
author_sort Lou, Hsin-Ya
title The role of membrane curvature in nanoscale topography-induced intracellular signaling
title_short The role of membrane curvature in nanoscale topography-induced intracellular signaling
title_full The role of membrane curvature in nanoscale topography-induced intracellular signaling
title_fullStr The role of membrane curvature in nanoscale topography-induced intracellular signaling
title_full_unstemmed The role of membrane curvature in nanoscale topography-induced intracellular signaling
title_sort role of membrane curvature in nanoscale topography-induced intracellular signaling
publishDate 2019
url https://hdl.handle.net/10356/90260
http://hdl.handle.net/10220/48454
_version_ 1787136731610349568