Determination of material parameters from regions close to the collector using electron beam-induced current

The conventional method of extracting the minority carrier diffusion length using the electron beam-induced current (EBIC) technique requires that the electron beam be placed at region more than two diffusion lengths away from the collector. The EBIC signals obtained under this condition usually has...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wu, Dethau., Ong, Vincent K. S.
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2009
主題:
在線閱讀:https://hdl.handle.net/10356/90975
http://hdl.handle.net/10220/5341
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The conventional method of extracting the minority carrier diffusion length using the electron beam-induced current (EBIC) technique requires that the electron beam be placed at region more than two diffusion lengths away from the collector. The EBIC signals obtained under this condition usually has low signal to noise ratio. In addition, the true diffusion length of the sample is initially unknown and hence it is difficult to estimate how close the beam can be placed from the collector. To overcome all these difficulties, a new method of extracting minority carrier diffusion length from the EBIC signal is proposed. It is shown that this method can be applied to EBIC signals obtained from regions close to the collector. It is also shown that the surface recombination velocity of the sample can also be obtained using this method. This theory is verified using EBIC data generated from a device simulation software.