A discrete de Rham complex with enhanced smoothness

Discrete de Rham complexes are fundamental tools in the construction of stable elements for some finite element methods. The purpose of this paper is to discuss a new discrete de Rham complex in three space dimensions, where the finite element spaces have extra smoothness compared to...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Tai, Xue Cheng, Winther, Ragnar
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2009
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/91827
http://hdl.handle.net/10220/4596
http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rft.object_id=954933105326&sfx.request_id=192332&sfx.ctx_obj_item=0
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Discrete de Rham complexes are fundamental tools in the construction of stable elements for some finite element methods. The purpose of this paper is to discuss a new discrete de Rham complex in three space dimensions, where the finite element spaces have extra smoothness compared to the standard requirements. The motivation for this construction is to produce discretizations which have uniform stability properties for certain families of singular perturbation problem. In particular, we show how the spaces constructed here lead to discretizations of Stokes type systems which have uniform convergence properties as the Stokes flow approaches a Darcy flow.