CNN-based distributed adaptive control for vehicle-following platoon with input saturation

A neural network-based distributed adaptive approach combined with sliding mode technique is proposed for vehicle-following platoons in the presence of input saturation, unknown unmodeled nonlinear dynamics, and external disturbances. A simple and straightforward strategy by adjusting only a single...

全面介紹

Saved in:
書目詳細資料
Main Authors: Guo, Xiang-Gui, Wang, Jian-Liang, Liao, Fang, Teo, Rodney Swee Huat
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2019
主題:
在線閱讀:https://hdl.handle.net/10356/93146
http://hdl.handle.net/10220/48519
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A neural network-based distributed adaptive approach combined with sliding mode technique is proposed for vehicle-following platoons in the presence of input saturation, unknown unmodeled nonlinear dynamics, and external disturbances. A simple and straightforward strategy by adjusting only a single parameter is proposed to compensate for the effect of input saturation. Two spacing polices (i.e., traditional constant time headway policy and modified constant time headway policy) are used to guarantee string stability and maintain the desired spacing. Chebyshev neural networks (CNN) are used to approximate the unknown nonlinear functions in the followers online, and the implementation of the basic functions of CNN depends only on the leader's velocity and acceleration. Furthermore, unlike existing approaches, the nonlinearities of consecutive vehicles need not satisfy the matching condition. Finally, simulations are carried out to illustrate the effectiveness and the advantage of the proposed methods, first using a numerical example, followed by a practical example of a high speed train platoon.