Trans-phonon effects in ultra-fast nanodevices
We report a novel phenomenon in carbon nanotube based ultra-fast mechanical devices, the trans-phonon effect, which resembles the transonic effects in aerodynamics. It is caused by dissipative resonance of nanotube phonons similar to the radial breathing mode, and subsequent drastic surge of the dra...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/93835 http://hdl.handle.net/10220/6775 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report a novel phenomenon in carbon nanotube based ultra-fast mechanical devices, the trans-phonon effect, which resembles the transonic effects in aerodynamics. It is caused by dissipative resonance of nanotube phonons similar to the radial breathing mode, and subsequent drastic surge of the dragging force on the sliding tube, and multiple phonon barriers are encountered as the intertube sliding velocity reaches critical values. It is found that the trans-phonon effects can be tuned by applying geometric constraints or varying chirality combinations of the nanotubes. |
---|