Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles

Thin-film carbon-nanotube networks can interface with living neuroendocrine PC12 cells and support their growth and proliferation. Interestingly, as revealed by total-internal-reflection fluorescence microscopy, the nanoroughness created by the carbon-nanotube net physically deforms the 5 nm thick c...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Jing, Fu, Dongliang, Li, Lain-Jong, Chen, Peng, Chan-Park, Mary B.
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94280
http://hdl.handle.net/10220/7488
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-94280
record_format dspace
spelling sg-ntu-dr.10356-942802020-06-01T10:21:09Z Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles Zhang, Jing Fu, Dongliang Li, Lain-Jong Chen, Peng Chan-Park, Mary B. School of Materials Science & Engineering DRNTU::Engineering::Materials::Nanostructured materials Thin-film carbon-nanotube networks can interface with living neuroendocrine PC12 cells and support their growth and proliferation. Interestingly, as revealed by total-internal-reflection fluorescence microscopy, the nanoroughness created by the carbon-nanotube net physically deforms the 5 nm thick cell membrane with high local curvature, and significantly impedes the lateral motion of subplasmalemmal secretory vesicles. 2012-01-31T05:54:54Z 2019-12-06T18:53:39Z 2012-01-31T05:54:54Z 2019-12-06T18:53:39Z 2009 2009 Journal Article Zhang, J., Fu, D., Chan-Park, M. B., Li, L. J., & Chen, P. (2009). Nanotopographic Carbon Nanotube Thin-Film Substrate Freezes Lateral Motion of Secretory Vesicles. Advanced Materials, 21(7), 790-793. https://hdl.handle.net/10356/94280 http://hdl.handle.net/10220/7488 10.1002/adma.200801586 141914 en Advanced materials © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Nanostructured materials
spellingShingle DRNTU::Engineering::Materials::Nanostructured materials
Zhang, Jing
Fu, Dongliang
Li, Lain-Jong
Chen, Peng
Chan-Park, Mary B.
Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
description Thin-film carbon-nanotube networks can interface with living neuroendocrine PC12 cells and support their growth and proliferation. Interestingly, as revealed by total-internal-reflection fluorescence microscopy, the nanoroughness created by the carbon-nanotube net physically deforms the 5 nm thick cell membrane with high local curvature, and significantly impedes the lateral motion of subplasmalemmal secretory vesicles.
author2 School of Materials Science & Engineering
author_facet School of Materials Science & Engineering
Zhang, Jing
Fu, Dongliang
Li, Lain-Jong
Chen, Peng
Chan-Park, Mary B.
format Article
author Zhang, Jing
Fu, Dongliang
Li, Lain-Jong
Chen, Peng
Chan-Park, Mary B.
author_sort Zhang, Jing
title Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
title_short Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
title_full Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
title_fullStr Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
title_full_unstemmed Nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
title_sort nanotopographic carbon nanotube thin-film substrate freezes lateral motion of secretory vesicles
publishDate 2012
url https://hdl.handle.net/10356/94280
http://hdl.handle.net/10220/7488
_version_ 1681057498587463680