Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2

The immunosuppressant FK-506 binding protein 38 (FKBP38) is localized at the mitochondrial membrane and appears to play an important role in apoptosis. Recent reports about the potential functions of FKBP38 in apoptosis appear to be controversial. To further understand the biological function of FKB...

Full description

Saved in:
Bibliographic Details
Main Authors: Kang, Cong Bao, Feng, Lin, Chia, Joel, Yoon, Ho Sup
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94816
http://hdl.handle.net/10220/8825
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The immunosuppressant FK-506 binding protein 38 (FKBP38) is localized at the mitochondrial membrane and appears to play an important role in apoptosis. Recent reports about the potential functions of FKBP38 in apoptosis appear to be controversial. To further understand the biological function of FKBP38, here, we studied its molecular characteristics and a potential regulatory role on the anti-apoptotic protein Bcl-2. Our results suggest that FKBP38 appears to show chaperone activities in the citrate synthase aggregation assays during thermal denaturation and affect solubility of Bcl-2 when they are co-expressed. The FKBP family proteins bind the immunosuppressive drug FK-506 through the FK-506 binding domain and consequently inhibit the activity of calcineurin. In this study, from our NMR studies and calcineurin assays in vitro, we demonstrate that the N-terminal fragment of FKBP38 which contains the FK-506 binding domain does not bind FK-506 at molecular level. Lastly, to investigate the effect of FKBP38 on Bcl-2, we suppressed FKBP38 by RNA interference (RNAi) of FKBP38. Our results suggest that the suppression of FKBP38 appears to make Bcl-2 unstable or unprotected from degradation in an unknown mechanism.