Molecular characterization of the recombinant A-chain of a Type II ribosome-inactivating protein (RIP) from viscum album coloratum and structural basis on its ribosome-inactivating activity and the sugar-binding properties of the B-chain

Mistletoe (Viscum album) lectins, which are classified as a type II ribosome-inactivating protein (RIP) due to their unique biological function and the potential medical and therapeutic application in cancer cells, receive a rising attention. The heterodimeric glycoproteins contain the Achain with c...

Full description

Saved in:
Bibliographic Details
Main Authors: Kang, Cong Bao, Ye, Wen-Hui, Nanga, Ravi Prakash Reddy, Song, Joo-Hye, Song, Seong Kyu, Yoon, Ho Sup
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/95124
http://hdl.handle.net/10220/8824
http://www.jbmb.or.kr/fulltext/jbmb/view.php?vol=39&page=560
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Mistletoe (Viscum album) lectins, which are classified as a type II ribosome-inactivating protein (RIP) due to their unique biological function and the potential medical and therapeutic application in cancer cells, receive a rising attention. The heterodimeric glycoproteins contain the Achain with catalytic activity and the B-chain with sugar binding properties. In recent years, studies involving the lectins from the white berry European mistletoe (Viscum album) and the yellow berry Korean mistletoe (Viscum album coloratum) have been described. However, the detailed mechanism in exerting unique cytotoxic effect on cancer cells still remains unclear. Here, we aim to understand and define the molecular basis and biological effects of the type II RIPs, through the studies of the recombinant Korean mistletoe lectin. To this end, we expressed, purified the recombinant Korean mistletoe lectin (rKML), and investigated its molecular characteristics in vitro, its cytotoxicity and ability to induce apoptotic cell death in cancer cells. To gain structural basis for its catalytic activity and sugar binding properties, we performed homology modeling studies based on the high degree of sequence identity and conserved secondary structure prediction between Korean and European, Himalayan mistletoe lectins, and Ricin.