Elimination of spurious solutions from k·p theory with Fourier transform technique and Burt-Foreman operator ordering

To eliminate spurious solutions in the multiple-band k·p theory, we developed the Fourier transform-based k·p approach through combining the Fourier transform technique with Burt-Foreman operator ordering. The performance is perfect for the six-band k·p calculation, and the spurious solutions in the...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Qiuji, Mei, Ting, Zhang, Dao Hua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/95137
http://hdl.handle.net/10220/9342
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:To eliminate spurious solutions in the multiple-band k·p theory, we developed the Fourier transform-based k·p approach through combining the Fourier transform technique with Burt-Foreman operator ordering. The performance is perfect for the six-band k·p calculation, and the spurious solutions in the conduction band met in the eight-band calculation can also be easily screened away in the inborn cut-off step in FTM, i.e., choosing a proper order of Fourier truncation. Truncating high-order terms of Fourier coefficients of the envelope function prevents the occurrence of a wild-spreading spectrum of the Fourier expansion coefficients, which can be taken as the signature of spurious solutions.