Ultrafast exciton dynamics and two-photon pumped lasing from ZnSe nanowires

The carrier recombination dynamics in ZnSe nanowires (NWs) remain poorly understood despite more than a decade of research since their inception in 2001. Herein, through a comprehensive pump fluence- and temperature-dependent two-photon excitation (TPE) study, a clear picture of the carrier relaxati...

全面介紹

Saved in:
書目詳細資料
Main Authors: Xing, Guichuan, Luo, Jingshan, Li, Hongxing, Wu, Bo, Liu, Xinfeng, Huan, Alfred Cheng Hon, Fan, Hong Jin, Sum, Tze Chien
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/95157
http://hdl.handle.net/10220/9818
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The carrier recombination dynamics in ZnSe nanowires (NWs) remain poorly understood despite more than a decade of research since their inception in 2001. Herein, through a comprehensive pump fluence- and temperature-dependent two-photon excitation (TPE) study, a clear picture of the carrier relaxation pathways, intrinsic lifetimes, exciton oscillator strengths, and exciton-phonon interactions is presented for this NW system. Contrary to a common perception that the higher pump intensities needed to achieve two-photon-excited photoluminescence correspond to a higher exciton density threshold (nth) for two-photon pumped lasing, it is found that a much lower nth is needed to achieve lasing with TPE compared to single-photon excitation (SPE) of the same ZnSe NWs. This measurement is further supported by the greatly enhanced lasing action photostability characteristics of the ZnSe NWs under TPE. These findings have significant implications on the design and the tailoring of the optoelectronic properties of nanowire lasers.