Comprehensive common spatial patterns with temporal structure information of EEG data : minimizing nontask related EEG component
In the context of electroencephalogram (EEG)-based brain-computer interfaces (BCI), common spatial patterns (CSP) is widely used for spatially filtering multichannel EEG signals. CSP is a supervised learning technique depending on only labeled trials. Its generalization performance deteriorates due...
Saved in:
Main Authors: | Wang, Haixian, Xu, Dong |
---|---|
其他作者: | School of Computer Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/95913 http://hdl.handle.net/10220/11253 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI
由: Mishuhina, Vasilisa, et al.
出版: (2020) -
Enhancing EEG-based classification of depression patients using spatial information
由: Jiang, Chao, et al.
出版: (2022) -
Joint spatial-temporal filter design for analysis of motor imagery EEG
由: Li, X., et al.
出版: (2014) -
TSception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition
由: Ding, Yi, et al.
出版: (2024) -
EEG signal separation for multi-class motor imagery using common spatial patterns based on joint approximate diagonalization
由: Liyanage, S.R., et al.
出版: (2014)