Unified regional approach to high temperature SOI DC/AC modeling
This paper extends the recent model development [1] to include temperature effect in a range from room temperature to 300C. The extraction of the temperature coefficients used in the model and the prediction of the model accuracy to the measurement data are included in this paper. It has been indent...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/96275 http://hdl.handle.net/10220/10624 http://www.techconnectworld.com/Nanotech2012/a.html?i=949 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-96275 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-962752019-12-06T19:28:04Z Unified regional approach to high temperature SOI DC/AC modeling Chiah, Siau Ben Zhou, Xing Chen, Zuhui Chen, Hung Ming School of Electrical and Electronic Engineering Microtech Conference & Expo (2012 : Santa Clara, CA) This paper extends the recent model development [1] to include temperature effect in a range from room temperature to 300C. The extraction of the temperature coefficients used in the model and the prediction of the model accuracy to the measurement data are included in this paper. It has been indentified by Shucair [3], Prijic et al. [4] and further commented by Eman et al. [2] that a Zero-Temperature-Coefficient (ZTC) point of a MOSFET in the linear operating region is a value of Vg that the reduction of threshold voltage due to the higher operating temperature is counter-balanced by the reduction of the mobility. The reduction of threshold voltage at increasing temperature with missing mobility reduction effect is indicated. Together with our temperature-dependent mobility formulation with two temperature coefficients, which are extracted from three linear region IdsVgs measurement data at nominal, mid and high temperatures, a ZTC point in a range of temperature can be shown. The model prediction to the DC measurement and AC MEDICI data are shown. 2013-06-25T06:04:36Z 2019-12-06T19:28:04Z 2013-06-25T06:04:36Z 2019-12-06T19:28:04Z 2012 2012 Conference Paper Chiah, S. B., Zhou, X., Chen, Z., & Chen, H. M. (2012). Unified Regional Approach to High Temperature SOI DC/AC Modeling. Microtech conference & Expo 2012, Santa Clara, CA. https://hdl.handle.net/10356/96275 http://hdl.handle.net/10220/10624 http://www.techconnectworld.com/Nanotech2012/a.html?i=949 164835 en © 2012 Microtech conference & Expo. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
This paper extends the recent model development [1] to include temperature effect in a range from room temperature to 300C. The extraction of the temperature coefficients used in the model and the prediction of the model accuracy to the measurement data are included in this paper. It has been indentified by Shucair [3], Prijic et al. [4] and further commented by Eman et al. [2] that a Zero-Temperature-Coefficient (ZTC) point of a MOSFET in the linear operating region is a value of Vg that the reduction of threshold voltage due to the higher operating temperature is counter-balanced by the reduction of the mobility. The reduction of threshold voltage at increasing temperature with missing mobility reduction effect is indicated. Together with our temperature-dependent mobility formulation with two temperature coefficients, which are extracted from three linear region IdsVgs measurement data at nominal, mid and high temperatures, a ZTC point in a range of temperature can be shown. The model prediction to the DC measurement and AC MEDICI data are shown. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Chiah, Siau Ben Zhou, Xing Chen, Zuhui Chen, Hung Ming |
format |
Conference or Workshop Item |
author |
Chiah, Siau Ben Zhou, Xing Chen, Zuhui Chen, Hung Ming |
spellingShingle |
Chiah, Siau Ben Zhou, Xing Chen, Zuhui Chen, Hung Ming Unified regional approach to high temperature SOI DC/AC modeling |
author_sort |
Chiah, Siau Ben |
title |
Unified regional approach to high temperature SOI DC/AC modeling |
title_short |
Unified regional approach to high temperature SOI DC/AC modeling |
title_full |
Unified regional approach to high temperature SOI DC/AC modeling |
title_fullStr |
Unified regional approach to high temperature SOI DC/AC modeling |
title_full_unstemmed |
Unified regional approach to high temperature SOI DC/AC modeling |
title_sort |
unified regional approach to high temperature soi dc/ac modeling |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/96275 http://hdl.handle.net/10220/10624 http://www.techconnectworld.com/Nanotech2012/a.html?i=949 |
_version_ |
1681042034557714432 |