Dorsal activity of maternal squint is mediated by a non-coding function of the RNA

Despite extensive study, the earliest steps of vertebrate axis formation are only beginning to be elucidated. We previously showed that asymmetric localization of maternal transcripts of the conserved zebrafish TGFβ factor Squint (Sqt) in 4-cell stage embryos predicts dorsal, preceding nuclear accum...

Full description

Saved in:
Bibliographic Details
Main Authors: Lim, S., Kumari, P., Gilligan, P., Quach, H. N. B., Mathavan, S., Sampath, Karuna.
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/96891
http://hdl.handle.net/10220/13181
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-96891
record_format dspace
spelling sg-ntu-dr.10356-968912020-03-07T12:18:15Z Dorsal activity of maternal squint is mediated by a non-coding function of the RNA Lim, S. Kumari, P. Gilligan, P. Quach, H. N. B. Mathavan, S. Sampath, Karuna. School of Biological Sciences DRNTU::Science::Biological sciences Despite extensive study, the earliest steps of vertebrate axis formation are only beginning to be elucidated. We previously showed that asymmetric localization of maternal transcripts of the conserved zebrafish TGFβ factor Squint (Sqt) in 4-cell stage embryos predicts dorsal, preceding nuclear accumulation of β-catenin. Cell ablations and antisense oligonucleotides that deplete Sqt lead to dorsal deficiencies, suggesting that localized maternal sqt functions in dorsal specification. However, based upon analysis of sqt and Nodal signaling mutants, the function and mechanism of maternal sqt was debated. Here, we show that sqt RNA may function independently of Sqt protein in dorsal specification. sqt insertion mutants express localized maternal sqt RNA. Overexpression of mutant/non-coding sqt RNA and, particularly, the sqt 3′UTR, leads to ectopic nuclear β-catenin accumulation and expands dorsal gene expression. Dorsal activity of sqt RNA requires Wnt/β-catenin but not Oep-dependent Nodal signaling. Unexpectedly, sqt ATG morpholinos block both sqt RNA localization and translation and abolish nuclear β-catenin, providing a mechanism for the loss of dorsal identity in sqt morphants and placing maternal sqt RNA upstream of β-catenin. The loss of early dorsal gene expression can be rescued by the sqt 3′UTR. Our findings identify new non-coding functions for the Nodal genes and support a model wherein sqt RNA acts as a scaffold to bind and deliver/sequester maternal factors to future embryonic dorsal. 2013-08-22T04:29:45Z 2019-12-06T19:36:22Z 2013-08-22T04:29:45Z 2019-12-06T19:36:22Z 2012 2012 Journal Article Lim, S., Kumari, P., Gilligan, P., Quach, H. N. B., Mathavan, S.,& Sampath, K. (2012). Dorsal activity of maternal squint is mediated by a non-coding function of the RNA. Development, 139(16), 2903-2915. https://hdl.handle.net/10356/96891 http://hdl.handle.net/10220/13181 10.1242/dev.077081 en Development
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences
spellingShingle DRNTU::Science::Biological sciences
Lim, S.
Kumari, P.
Gilligan, P.
Quach, H. N. B.
Mathavan, S.
Sampath, Karuna.
Dorsal activity of maternal squint is mediated by a non-coding function of the RNA
description Despite extensive study, the earliest steps of vertebrate axis formation are only beginning to be elucidated. We previously showed that asymmetric localization of maternal transcripts of the conserved zebrafish TGFβ factor Squint (Sqt) in 4-cell stage embryos predicts dorsal, preceding nuclear accumulation of β-catenin. Cell ablations and antisense oligonucleotides that deplete Sqt lead to dorsal deficiencies, suggesting that localized maternal sqt functions in dorsal specification. However, based upon analysis of sqt and Nodal signaling mutants, the function and mechanism of maternal sqt was debated. Here, we show that sqt RNA may function independently of Sqt protein in dorsal specification. sqt insertion mutants express localized maternal sqt RNA. Overexpression of mutant/non-coding sqt RNA and, particularly, the sqt 3′UTR, leads to ectopic nuclear β-catenin accumulation and expands dorsal gene expression. Dorsal activity of sqt RNA requires Wnt/β-catenin but not Oep-dependent Nodal signaling. Unexpectedly, sqt ATG morpholinos block both sqt RNA localization and translation and abolish nuclear β-catenin, providing a mechanism for the loss of dorsal identity in sqt morphants and placing maternal sqt RNA upstream of β-catenin. The loss of early dorsal gene expression can be rescued by the sqt 3′UTR. Our findings identify new non-coding functions for the Nodal genes and support a model wherein sqt RNA acts as a scaffold to bind and deliver/sequester maternal factors to future embryonic dorsal.
author2 School of Biological Sciences
author_facet School of Biological Sciences
Lim, S.
Kumari, P.
Gilligan, P.
Quach, H. N. B.
Mathavan, S.
Sampath, Karuna.
format Article
author Lim, S.
Kumari, P.
Gilligan, P.
Quach, H. N. B.
Mathavan, S.
Sampath, Karuna.
author_sort Lim, S.
title Dorsal activity of maternal squint is mediated by a non-coding function of the RNA
title_short Dorsal activity of maternal squint is mediated by a non-coding function of the RNA
title_full Dorsal activity of maternal squint is mediated by a non-coding function of the RNA
title_fullStr Dorsal activity of maternal squint is mediated by a non-coding function of the RNA
title_full_unstemmed Dorsal activity of maternal squint is mediated by a non-coding function of the RNA
title_sort dorsal activity of maternal squint is mediated by a non-coding function of the rna
publishDate 2013
url https://hdl.handle.net/10356/96891
http://hdl.handle.net/10220/13181
_version_ 1681045004266504192