One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage
Uniform carbon-coated single crystalline vanadium dioxide (VO2(B)@C) nanobelts were successfully prepared by using a facile one-pot hydrothermal approach. Sucrose plays a dual role in this hydrothermal process, namely as a carbon precursor for the carbon shell and, as a reductant to reduce V2O5 to V...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/97133 http://hdl.handle.net/10220/10410 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Uniform carbon-coated single crystalline vanadium dioxide (VO2(B)@C) nanobelts were successfully prepared by using a facile one-pot hydrothermal approach. Sucrose plays a dual role in this hydrothermal process, namely as a carbon precursor for the carbon shell and, as a reductant to reduce V2O5 to VO2(B). The thickness of the carbon coating layer is tunable from 3.0 to 6.9 nm by changing the ratio of the precursors. Although a high carbon content can improve the electrical conductivity of VO2(B)@C nanobelts, a thick carbon coating layer would block the lithium ion diffusion. The optimal thickness is found to be 4.3 nm (carbon content: 6.6 wt%), where the cathode displays superior performance with highly reversible specific capacities, good cycling stabilities and excellent rate capabilities (e.g. 100 mA h g−1 at 12.4 C). |
---|