Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers

Self-organized zinc oxide (ZnO) nanofiber network with six-fold symmetry was fabricated on ZnO-buffered (0001) sapphire substrate with patterned gold catalyst by vapor-phase transport method. From the ZnO buffer layer, hexagonal ZnO nanorods with identical in-plane structure grew epitaxially along [...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, B. J., Yu, S. F., Xu, Chunxiang, Sun, Xiaowei, Yuen, Clement, Dong, Zhili
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2011
Subjects:
Online Access:https://hdl.handle.net/10356/97183
http://hdl.handle.net/10220/6887
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Self-organized zinc oxide (ZnO) nanofiber network with six-fold symmetry was fabricated on ZnO-buffered (0001) sapphire substrate with patterned gold catalyst by vapor-phase transport method. From the ZnO buffer layer, hexagonal ZnO nanorods with identical in-plane structure grew epitaxially along [0001] orientation to form vertical stems. The nanofiber branches grew horizontally from six side-surfaces of the vertical stem along [0110] and other equivalent directions. The aligned network structure constructed a waveguide array with optical gain. Ultraviolet amplified spontaneous emission was observed along the side-branching nanofibers when the aligned ZnO network was excited by a frequency-tripled Nd:YAG laser.