Optical and electrical applications of ZnSxSe1−x nanowires-network with uniform and controllable stoichiometry
Single crystalline ternary ZnSxSe1−x nanowires with uniform chemical stoichiometry and accurately controllable compositions (0≤ x ≤ 1) were synthesized through a simple and yet effective one-step approach with a specially designed modification. Energy-gap-tuning via compositional change was achieved...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/97245 http://hdl.handle.net/10220/10698 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Single crystalline ternary ZnSxSe1−x nanowires with uniform chemical stoichiometry and accurately controllable compositions (0≤ x ≤ 1) were synthesized through a simple and yet effective one-step approach with a specially designed modification. Energy-gap-tuning via compositional change was achieved for a direct band gap from 2.6 to 3.6 eV. Raman spectroscopy studies revealed typical two-mode behavior indicative of high miscibility in the alloyed compound. Moreover, the enhanced electrical-conductivity and gating effect behavior after the formation of ternary alloy enable their application in nano/micro-field effect transistor devices. In addition, the slow recombination rate in the photo-response process indicates their potential for photoelectric applications. |
---|