Spontaneous growth and phase transformation of highly conductive nickel germanide nanowires

We report the synthesis, phase transformation, and electrical property measurement of single-crystal NiGe and ε-Ni5Ge3 nanowires (NWs). NiGe NWs were spontaneously synthesized by chemical vapor deposition of GeH4 onto a porous Ni substrate without the use of intentional catalysts. The as-grown NWs o...

全面介紹

Saved in:
書目詳細資料
Main Authors: Higgins, Jeremy M., Faber, Matthew S., Yan, Chaoyi, Lee, Pooi See, Jin, Song
其他作者: School of Materials Science & Engineering
格式: Article
語言:English
出版: 2013
在線閱讀:https://hdl.handle.net/10356/97270
http://hdl.handle.net/10220/10448
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We report the synthesis, phase transformation, and electrical property measurement of single-crystal NiGe and ε-Ni5Ge3 nanowires (NWs). NiGe NWs were spontaneously synthesized by chemical vapor deposition of GeH4 onto a porous Ni substrate without the use of intentional catalysts. The as-grown NWs of the orthorhombic NiGe phase were transformed to the hexagonal ε-Ni5Ge3 phase by thermal annealing induced Ni enrichment. This controllable conversion of germanide phases is desirable for phase-dependent property study and applications, and the observation of novel metastable ε-Ni5Ge3 phase suggests the importance of kinetic factors in such nanophase transformations. Electrical studies reveal that NiGe NWs are highly conductive, with an average resistivity of 35 ± 15 μΩ·cm, while the resistivity of ε-Ni5Ge3 NWs is more than 4 times that of the NiGe phase. NWs of nickel germanides, particularly NiGe, would be useful building blocks for germanium-based nanoelectronic devices.