Modelling 3D control of upright stance using an optimal control strategy

A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior–posterior and medial–lateral directions. The human body was represented as a two-segment inverted pendulum. Seve...

Full description

Saved in:
Bibliographic Details
Main Authors: Qu, Xingda, Nussbaum, Maury A.
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/97288
http://hdl.handle.net/10220/13146
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior–posterior and medial–lateral directions. The human body was represented as a two-segment inverted pendulum. Several assumptions were made to linearise body dynamics, for example, that there was no transverse rotation during upright stance. The neural controller was presumed to be an optimal controller that generates ankle control torque and hip control torque according to certain performance criteria. An optimisation procedure was used to determine the values of unspecified model parameters including random disturbance gains and sensory delay times. This model was used to simulate postural sway behaviours characterised by centre-of-pressure (COP)-based measures. Confidence intervals for all normalised COP-based measures contained unity, indicating no significant differences between any of the simulated COP-based measures and corresponding experimental references. In addition, mean normalised errors for the traditional measures were < 8%, and those for most statistical mechanics measures were 3–66%. On the basis these results, the proposed 3D balance control model appears to have the ability to accurately simulate 3D postural sway behaviours.