A mini-max robust estimation fusion in distributed multi-sensor target tracking systems
This paper proposed a mini-max fusion strategy in distributed multi-sensor system, which aims to minimize the worst-case squared estimation error when the cross-covariances between local sensors are unknown. The resulted estimation fusion is called as the Chebyshev fusion estimation (CFE) which is a...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/97810 http://hdl.handle.net/10220/12136 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This paper proposed a mini-max fusion strategy in distributed multi-sensor system, which aims to minimize the worst-case squared estimation error when the cross-covariances between local sensors are unknown. The resulted estimation fusion is called as the Chebyshev fusion estimation (CFE) which is actually a non-linear combination of local estimations. We have also proofed that the CFE is better than any local estimator in the sense of minimize the worst-case squared estimation error. Moreover, a sensitive analysis about the choice of the support bound is carried out. The simulations illustrate that the proposed CFE is a robust fusion and more accurate than the previous covariance intersection (CI) estimation fusion method. |
---|