Li-ion battery SOC estimation using EKF based on a model proposed by extreme learning machine
In this paper, a method for modeling and estimation of Li-ion battery state of charge (SOC) using extreme learning machine (ELM) and extended Kalman filter (EKF) is proposed. The Li-ion battery model from ELM, which is established by training the data from the battery block in MATLAB/Simulation, cou...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/98879 http://hdl.handle.net/10220/12835 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, a method for modeling and estimation of Li-ion battery state of charge (SOC) using extreme learning machine (ELM) and extended Kalman filter (EKF) is proposed. The Li-ion battery model from ELM, which is established by training the data from the battery block in MATLAB/Simulation, could describe the dynamics of Li-ion battery very well. And it has higher accuracy and needs less calculation than using the traditional neural networks. Moreover, the battery model and discrete SOC definition equation constitute state-space equations, and EKF is used to estimate the SOC of Li-ion battery. Comparing the actual SOC with the estimated SOC by simulation, it reveals that the method proposed in this paper has good performance on Li-ion battery SOC estimation. |
---|