Visual event recognition in videos by learning from web data
We propose a visual event recognition framework for consumer videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). Observing that consumer videos generally contain large intraclass variations within the same type of events, we first propose a new method, called Alig...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99186 http://hdl.handle.net/10220/13518 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99186 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-991862020-05-28T07:41:41Z Visual event recognition in videos by learning from web data Duan, Lixin Xu, Dong Tsang, Ivor Wai-Hung Luo, Jiebo School of Computer Engineering DRNTU::Engineering::Computer science and engineering::Data We propose a visual event recognition framework for consumer videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). Observing that consumer videos generally contain large intraclass variations within the same type of events, we first propose a new method, called Aligned Space-Time Pyramid Matching (ASTPM), to measure the distance between any two video clips. Second, we propose a new transfer learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), in order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time features and static SIFT features) and 2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web video domain and consumer video domain). For each pyramid level and each type of local features, we first train a set of SVM classifiers based on the combined training set from two domains by using multiple base kernels from different kernel types and parameters, which are then fused with equal weights to obtain a prelearned average classifier. In A-MKL, for each event class we learn an adapted target classifier based on multiple base kernels and the prelearned average classifiers from this event class or all the event classes by minimizing both the structural risk functional and the mismatch between data distributions of two domains. Extensive experiments demonstrate the effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data. We also conduct an in-depth investigation on various aspects of the proposed method A-MKL, such as the analysis on the combination coefficients on the prelearned classifiers, the convergence of the learning algorithm, and the performance variation by using different proportions of labeled consumer videos. Moreover, we show that A-MKL using the prelearned classifiers from all the event classes leads to better performance when compared with A-MK- using the prelearned classifiers only from each individual event class. 2013-09-18T06:36:22Z 2019-12-06T20:04:14Z 2013-09-18T06:36:22Z 2019-12-06T20:04:14Z 2012 2012 Journal Article Duan, L., Xu. D., Tsang, I. W., & Luo, J. (2012). Visual Event Recognition in Videos by Learning from Web Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1667-1680. 0162-8828 https://hdl.handle.net/10356/99186 http://hdl.handle.net/10220/13518 10.1109/TPAMI.2011.265 en IEEE transactions on pattern analysis and machine intelligence © 2012 IEEE |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering::Data |
spellingShingle |
DRNTU::Engineering::Computer science and engineering::Data Duan, Lixin Xu, Dong Tsang, Ivor Wai-Hung Luo, Jiebo Visual event recognition in videos by learning from web data |
description |
We propose a visual event recognition framework for consumer videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). Observing that consumer videos generally contain large intraclass variations within the same type of events, we first propose a new method, called Aligned Space-Time Pyramid Matching (ASTPM), to measure the distance between any two video clips. Second, we propose a new transfer learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), in order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time features and static SIFT features) and 2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web video domain and consumer video domain). For each pyramid level and each type of local features, we first train a set of SVM classifiers based on the combined training set from two domains by using multiple base kernels from different kernel types and parameters, which are then fused with equal weights to obtain a prelearned average classifier. In A-MKL, for each event class we learn an adapted target classifier based on multiple base kernels and the prelearned average classifiers from this event class or all the event classes by minimizing both the structural risk functional and the mismatch between data distributions of two domains. Extensive experiments demonstrate the effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data. We also conduct an in-depth investigation on various aspects of the proposed method A-MKL, such as the analysis on the combination coefficients on the prelearned classifiers, the convergence of the learning algorithm, and the performance variation by using different proportions of labeled consumer videos. Moreover, we show that A-MKL using the prelearned classifiers from all the event classes leads to better performance when compared with A-MK- using the prelearned classifiers only from each individual event class. |
author2 |
School of Computer Engineering |
author_facet |
School of Computer Engineering Duan, Lixin Xu, Dong Tsang, Ivor Wai-Hung Luo, Jiebo |
format |
Article |
author |
Duan, Lixin Xu, Dong Tsang, Ivor Wai-Hung Luo, Jiebo |
author_sort |
Duan, Lixin |
title |
Visual event recognition in videos by learning from web data |
title_short |
Visual event recognition in videos by learning from web data |
title_full |
Visual event recognition in videos by learning from web data |
title_fullStr |
Visual event recognition in videos by learning from web data |
title_full_unstemmed |
Visual event recognition in videos by learning from web data |
title_sort |
visual event recognition in videos by learning from web data |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/99186 http://hdl.handle.net/10220/13518 |
_version_ |
1681059462746472448 |