The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2

Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cyt...

Full description

Saved in:
Bibliographic Details
Main Authors: Dip, Phat Vinh, Grüber, Gerhard, Marshansky, Vladimir, Hosokawa, H., Merkulova, M., Bakulina, A., Zhuang, Z., Khatri, A., Jian, X., Keating, S. M., Bueler, S. A., Rubinstein, J. L., Randazzo, P. A., Ausiello, D. A.
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99231
http://hdl.handle.net/10220/17563
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-99231
record_format dspace
spelling sg-ntu-dr.10356-992312022-02-16T16:28:34Z The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2 Dip, Phat Vinh Grüber, Gerhard Marshansky, Vladimir Hosokawa, H. Merkulova, M. Bakulina, A. Zhuang, Z. Khatri, A. Jian, X. Keating, S. M. Bueler, S. A. Rubinstein, J. L. Randazzo, P. A. Ausiello, D. A. School of Biological Sciences DRNTU::Science::Biological sciences Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor. 2013-11-11T04:57:56Z 2019-12-06T20:04:54Z 2013-11-11T04:57:56Z 2019-12-06T20:04:54Z 2013 2013 Journal Article Hosokawa, H., Dip, P. V., Merkulova, M., Bakulina, A., Zhuang, Z., Khatri, A., et al. (2013). The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. Journal of biological chemistry, 288(8), 5896-5913. https://hdl.handle.net/10356/99231 http://hdl.handle.net/10220/17563 10.1074/jbc.M112.409169 23288846 en Journal of biological chemistry
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences
spellingShingle DRNTU::Science::Biological sciences
Dip, Phat Vinh
Grüber, Gerhard
Marshansky, Vladimir
Hosokawa, H.
Merkulova, M.
Bakulina, A.
Zhuang, Z.
Khatri, A.
Jian, X.
Keating, S. M.
Bueler, S. A.
Rubinstein, J. L.
Randazzo, P. A.
Ausiello, D. A.
The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2
description Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor.
author2 School of Biological Sciences
author_facet School of Biological Sciences
Dip, Phat Vinh
Grüber, Gerhard
Marshansky, Vladimir
Hosokawa, H.
Merkulova, M.
Bakulina, A.
Zhuang, Z.
Khatri, A.
Jian, X.
Keating, S. M.
Bueler, S. A.
Rubinstein, J. L.
Randazzo, P. A.
Ausiello, D. A.
format Article
author Dip, Phat Vinh
Grüber, Gerhard
Marshansky, Vladimir
Hosokawa, H.
Merkulova, M.
Bakulina, A.
Zhuang, Z.
Khatri, A.
Jian, X.
Keating, S. M.
Bueler, S. A.
Rubinstein, J. L.
Randazzo, P. A.
Ausiello, D. A.
author_sort Dip, Phat Vinh
title The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2
title_short The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2
title_full The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2
title_fullStr The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2
title_full_unstemmed The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2
title_sort n termini of a-subunit isoforms are involved in signaling between vacuolar h+-atpase (v-atpase) and cytohesin-2
publishDate 2013
url https://hdl.handle.net/10356/99231
http://hdl.handle.net/10220/17563
_version_ 1725985705251831808