Interaction between graphene and the surface of SiO2
The interaction between graphene and a SiO2 surface has been analyzed with first-principles DFT calculations by constructing the different configurations based on α-quartz and cristobalite structures. The fact that single-layer graphene can stay stably on a SiO2 surface is explained based on a gener...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/99241 http://hdl.handle.net/10220/17247 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The interaction between graphene and a SiO2 surface has been analyzed with first-principles DFT calculations by constructing the different configurations based on α-quartz and cristobalite structures. The fact that single-layer graphene can stay stably on a SiO2 surface is explained based on a general consideration of the configuration structures of the SiO2 surface. It is found that the oxygen defect in a SiO2 surface can shift the Fermi level of graphene down which opens up the mechanism of the hole-doping effect of graphene adsorbed on a SiO2 surface observed in a lot of experiments. |
---|