Laplacian embedded regression for scalable manifold regularization
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundati...
Saved in:
Main Authors: | Chen, Lin, Tsang, Ivor Wai-Hung, Xu, Dong |
---|---|
其他作者: | School of Computer Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/99250 http://hdl.handle.net/10220/13482 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Laplacian Regularized Subspace Learning for interactive image re-ranking
由: Zhang, Lining., et al.
出版: (2013) -
Domain adaptation from multiple sources : a domain-dependent regularization approach
由: Duan, Lixin, et al.
出版: (2013) -
Transductive ordinal regression
由: Seah, Chun-Wei, et al.
出版: (2013) -
Manifold regularized stochastic block model
由: He, Tiantian, et al.
出版: (2021) -
Handling ambiguity via input-output kernel learning
由: Xu, Xinxing, et al.
出版: (2013)