Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator

In the twisted nematic liquid crystal spatial light modulators (TN-LCSLM), distortion of uniform twist and decrease in tilt angle of liquid crystal molecules on application of an electric field lead to amplitude and phase modulations of the transmitted or reflected wavefront, respectively. The ampli...

Full description

Saved in:
Bibliographic Details
Main Authors: Dev, Kapil, Asundi, Anand Krishna
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99592
http://hdl.handle.net/10220/13649
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In the twisted nematic liquid crystal spatial light modulators (TN-LCSLM), distortion of uniform twist and decrease in tilt angle of liquid crystal molecules on application of an electric field lead to amplitude and phase modulations of the transmitted or reflected wavefront, respectively. The amplitude and phase modulation characterization of TN-LCSLM using Jones calculi is simple and extensively used but does not give any information about important polarimetric parameters such as diattenuation and depolarizance. On the other hand, the characterization using Mueller calculi provides all information in terms of polarimetric properties such as diattenuation, retardance (birefringence) and depolarization. In this paper, polarimetric properties of the transmissive TN-LCSLM (HOLOEYE LC2002) are characterized measuring 17 different Mueller matrices at different addressed gray scale through Mueller Matrix Imaging Polarimeter (MMIP) at 530 nm wavelength. Lu–Chipman polar decomposition for Mueller matrix is utilized to separate out three independent Mueller matrices for diattenuation, depolarization and retardance as a function of addressed gray scale. Further, Mueller–Stokes combined formulation is used to examine the effect of depolarization present in the TN-LCSLM on six different states of polarization and evaluation of eigenpolarization states for the TN-LCSLM has been presented.