Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator
In the twisted nematic liquid crystal spatial light modulators (TN-LCSLM), distortion of uniform twist and decrease in tilt angle of liquid crystal molecules on application of an electric field lead to amplitude and phase modulations of the transmitted or reflected wavefront, respectively. The ampli...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99592 http://hdl.handle.net/10220/13649 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99592 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-995922020-03-07T13:22:19Z Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator Dev, Kapil Asundi, Anand Krishna School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering In the twisted nematic liquid crystal spatial light modulators (TN-LCSLM), distortion of uniform twist and decrease in tilt angle of liquid crystal molecules on application of an electric field lead to amplitude and phase modulations of the transmitted or reflected wavefront, respectively. The amplitude and phase modulation characterization of TN-LCSLM using Jones calculi is simple and extensively used but does not give any information about important polarimetric parameters such as diattenuation and depolarizance. On the other hand, the characterization using Mueller calculi provides all information in terms of polarimetric properties such as diattenuation, retardance (birefringence) and depolarization. In this paper, polarimetric properties of the transmissive TN-LCSLM (HOLOEYE LC2002) are characterized measuring 17 different Mueller matrices at different addressed gray scale through Mueller Matrix Imaging Polarimeter (MMIP) at 530 nm wavelength. Lu–Chipman polar decomposition for Mueller matrix is utilized to separate out three independent Mueller matrices for diattenuation, depolarization and retardance as a function of addressed gray scale. Further, Mueller–Stokes combined formulation is used to examine the effect of depolarization present in the TN-LCSLM on six different states of polarization and evaluation of eigenpolarization states for the TN-LCSLM has been presented. 2013-09-24T07:02:02Z 2019-12-06T20:09:19Z 2013-09-24T07:02:02Z 2019-12-06T20:09:19Z 2011 2011 Journal Article Dev, K., & Asundi, A. (2011). Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator. Optics and lasers in engineering, 50(4), 599-607. https://hdl.handle.net/10356/99592 http://hdl.handle.net/10220/13649 10.1016/j.optlaseng.2011.10.004 en Optics and lasers in engineering |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering |
spellingShingle |
DRNTU::Engineering::Mechanical engineering Dev, Kapil Asundi, Anand Krishna Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
description |
In the twisted nematic liquid crystal spatial light modulators (TN-LCSLM), distortion of uniform twist and decrease in tilt angle of liquid crystal molecules on application of an electric field lead to amplitude and phase modulations of the transmitted or reflected wavefront, respectively. The amplitude and phase modulation characterization of TN-LCSLM using Jones calculi is simple and extensively used but does not give any information about important polarimetric parameters such as diattenuation and depolarizance. On the other hand, the characterization using Mueller calculi provides all information in terms of polarimetric properties such as diattenuation, retardance (birefringence) and depolarization. In this paper, polarimetric properties of the transmissive TN-LCSLM (HOLOEYE LC2002) are characterized measuring 17 different Mueller matrices at different addressed gray scale through Mueller Matrix Imaging Polarimeter (MMIP) at 530 nm wavelength. Lu–Chipman polar decomposition for Mueller matrix is utilized to separate out three independent Mueller matrices for diattenuation, depolarization and retardance as a function of addressed gray scale. Further, Mueller–Stokes combined formulation is used to examine the effect of depolarization present in the TN-LCSLM on six different states of polarization and evaluation of eigenpolarization states for the TN-LCSLM has been presented. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Dev, Kapil Asundi, Anand Krishna |
format |
Article |
author |
Dev, Kapil Asundi, Anand Krishna |
author_sort |
Dev, Kapil |
title |
Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
title_short |
Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
title_full |
Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
title_fullStr |
Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
title_full_unstemmed |
Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
title_sort |
mueller–stokes polarimetric characterization of transmissive liquid crystal spatial light modulator |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/99592 http://hdl.handle.net/10220/13649 |
_version_ |
1681043166806933504 |