Nanoscale-controlled enzymatic degradation of poly(L-lactic acid) films using dip-pen nanolithography
Proteinase K is patterned on poly(L-lactic acid) (PLLA) film by agarose-assisted dip-pen nanolithography. Lateral biodegradation at the nanometer scale on PLLA film is faster than vertical biodegradation. The height and diameter of the patterned proteinase K dots can affect the depth of the biodegra...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99642 http://hdl.handle.net/10220/8640 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Proteinase K is patterned on poly(L-lactic acid) (PLLA) film by agarose-assisted dip-pen nanolithography. Lateral biodegradation at the nanometer scale on PLLA film is faster than vertical biodegradation. The height and diameter of the patterned proteinase K dots can affect the depth of the biodegraded holes, while the concentration of the proteinase K solution (the ink used to coat the AFM tip) does not affect the biodegradation. |
---|