A strategy for quantum algorithm design assisted by machine learning
10.1088/1367-2630/16/7/073017
Saved in:
Main Authors: | Bang, J, Ryu, J, Yoo, S, Pawlowski, M, Lee, J |
---|---|
其他作者: | CENTRE FOR QUANTUM TECHNOLOGIES |
格式: | Article |
出版: |
Institute of Physics Publishing
2020
|
主題: | |
在線閱讀: | https://scholarbank.nus.edu.sg/handle/10635/180175 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | National University of Singapore |
相似書籍
-
Monte Carlo sampling from the quantum state space. II
由: Seah, Y.-L, et al.
出版: (2020) -
Hidden symmetry subgroup problems
由: Decker, T., et al.
出版: (2014) -
Quantum speedup, circuit decoupling, and stochastic modelling: on how quantum theory improves machine-learning, and how machine-learning helps to process quantum information
由: Wang, Ximing
出版: (2025) -
Numerical analysis for inchworm Monte Carlo method: Sign problem and error growth
由: Cai, Zhenning, et al.
出版: (2023) -
ANALOG QUANTUM SIMULATORS FOR QUANTUM ADVANTAGE AND QUANTUM MACHINE LEARNING
由: THANASILP SUPANUT
出版: (2023)