An open-source machine learning framework for global analyses of parton distributions

10.1140/epjc/s10052-021-09747-9

Saved in:
Bibliographic Details
Main Authors: Ball, Richard D., Carrazza, Stefano, Cruz-Martinez, Juan, Del Debbio, Luigi, Forte, Stefano, Giani, Tommaso, Iranipour, Shayan, Kassabov, Zahari, Latorre, Jose, I, Nocera, Emanuele R., Pearson, Rosalyn L., Rojo, Juan, Stegeman, Roy, Schwan, Christopher, Ubiali, Maria, Voisey, Cameron, Wilson, Michael
Other Authors: PHYSICS
Format: Article
Published: Springer Science and Business Media Deutschland GmbH 2022
Online Access:https://scholarbank.nus.edu.sg/handle/10635/232387
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-232387
record_format dspace
spelling sg-nus-scholar.10635-2323872024-04-17T09:54:42Z An open-source machine learning framework for global analyses of parton distributions Ball, Richard D. Carrazza, Stefano Cruz-Martinez, Juan Del Debbio, Luigi Forte, Stefano Giani, Tommaso Iranipour, Shayan Kassabov, Zahari Latorre, Jose, I Nocera, Emanuele R. Pearson, Rosalyn L. Rojo, Juan Stegeman, Roy Schwan, Christopher Ubiali, Maria Voisey, Cameron Wilson, Michael PHYSICS 10.1140/epjc/s10052-021-09747-9 European Physical Journal C 81 10 958 2022-10-12T08:01:00Z 2022-10-12T08:01:00Z 2021-10-01 Article Ball, Richard D., Carrazza, Stefano, Cruz-Martinez, Juan, Del Debbio, Luigi, Forte, Stefano, Giani, Tommaso, Iranipour, Shayan, Kassabov, Zahari, Latorre, Jose, I, Nocera, Emanuele R., Pearson, Rosalyn L., Rojo, Juan, Stegeman, Roy, Schwan, Christopher, Ubiali, Maria, Voisey, Cameron, Wilson, Michael (2021-10-01). An open-source machine learning framework for global analyses of parton distributions. European Physical Journal C 81 (10) : 958. ScholarBank@NUS Repository. https://doi.org/10.1140/epjc/s10052-021-09747-9 1434-6044 https://scholarbank.nus.edu.sg/handle/10635/232387 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ Springer Science and Business Media Deutschland GmbH Scopus OA2021
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
description 10.1140/epjc/s10052-021-09747-9
author2 PHYSICS
author_facet PHYSICS
Ball, Richard D.
Carrazza, Stefano
Cruz-Martinez, Juan
Del Debbio, Luigi
Forte, Stefano
Giani, Tommaso
Iranipour, Shayan
Kassabov, Zahari
Latorre, Jose, I
Nocera, Emanuele R.
Pearson, Rosalyn L.
Rojo, Juan
Stegeman, Roy
Schwan, Christopher
Ubiali, Maria
Voisey, Cameron
Wilson, Michael
format Article
author Ball, Richard D.
Carrazza, Stefano
Cruz-Martinez, Juan
Del Debbio, Luigi
Forte, Stefano
Giani, Tommaso
Iranipour, Shayan
Kassabov, Zahari
Latorre, Jose, I
Nocera, Emanuele R.
Pearson, Rosalyn L.
Rojo, Juan
Stegeman, Roy
Schwan, Christopher
Ubiali, Maria
Voisey, Cameron
Wilson, Michael
spellingShingle Ball, Richard D.
Carrazza, Stefano
Cruz-Martinez, Juan
Del Debbio, Luigi
Forte, Stefano
Giani, Tommaso
Iranipour, Shayan
Kassabov, Zahari
Latorre, Jose, I
Nocera, Emanuele R.
Pearson, Rosalyn L.
Rojo, Juan
Stegeman, Roy
Schwan, Christopher
Ubiali, Maria
Voisey, Cameron
Wilson, Michael
An open-source machine learning framework for global analyses of parton distributions
author_sort Ball, Richard D.
title An open-source machine learning framework for global analyses of parton distributions
title_short An open-source machine learning framework for global analyses of parton distributions
title_full An open-source machine learning framework for global analyses of parton distributions
title_fullStr An open-source machine learning framework for global analyses of parton distributions
title_full_unstemmed An open-source machine learning framework for global analyses of parton distributions
title_sort open-source machine learning framework for global analyses of parton distributions
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2022
url https://scholarbank.nus.edu.sg/handle/10635/232387
_version_ 1800915608916721664