An open-source machine learning framework for global analyses of parton distributions
10.1140/epjc/s10052-021-09747-9
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2022
|
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/232387 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-232387 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-2323872024-04-17T09:54:42Z An open-source machine learning framework for global analyses of parton distributions Ball, Richard D. Carrazza, Stefano Cruz-Martinez, Juan Del Debbio, Luigi Forte, Stefano Giani, Tommaso Iranipour, Shayan Kassabov, Zahari Latorre, Jose, I Nocera, Emanuele R. Pearson, Rosalyn L. Rojo, Juan Stegeman, Roy Schwan, Christopher Ubiali, Maria Voisey, Cameron Wilson, Michael PHYSICS 10.1140/epjc/s10052-021-09747-9 European Physical Journal C 81 10 958 2022-10-12T08:01:00Z 2022-10-12T08:01:00Z 2021-10-01 Article Ball, Richard D., Carrazza, Stefano, Cruz-Martinez, Juan, Del Debbio, Luigi, Forte, Stefano, Giani, Tommaso, Iranipour, Shayan, Kassabov, Zahari, Latorre, Jose, I, Nocera, Emanuele R., Pearson, Rosalyn L., Rojo, Juan, Stegeman, Roy, Schwan, Christopher, Ubiali, Maria, Voisey, Cameron, Wilson, Michael (2021-10-01). An open-source machine learning framework for global analyses of parton distributions. European Physical Journal C 81 (10) : 958. ScholarBank@NUS Repository. https://doi.org/10.1140/epjc/s10052-021-09747-9 1434-6044 https://scholarbank.nus.edu.sg/handle/10635/232387 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ Springer Science and Business Media Deutschland GmbH Scopus OA2021 |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
description |
10.1140/epjc/s10052-021-09747-9 |
author2 |
PHYSICS |
author_facet |
PHYSICS Ball, Richard D. Carrazza, Stefano Cruz-Martinez, Juan Del Debbio, Luigi Forte, Stefano Giani, Tommaso Iranipour, Shayan Kassabov, Zahari Latorre, Jose, I Nocera, Emanuele R. Pearson, Rosalyn L. Rojo, Juan Stegeman, Roy Schwan, Christopher Ubiali, Maria Voisey, Cameron Wilson, Michael |
format |
Article |
author |
Ball, Richard D. Carrazza, Stefano Cruz-Martinez, Juan Del Debbio, Luigi Forte, Stefano Giani, Tommaso Iranipour, Shayan Kassabov, Zahari Latorre, Jose, I Nocera, Emanuele R. Pearson, Rosalyn L. Rojo, Juan Stegeman, Roy Schwan, Christopher Ubiali, Maria Voisey, Cameron Wilson, Michael |
spellingShingle |
Ball, Richard D. Carrazza, Stefano Cruz-Martinez, Juan Del Debbio, Luigi Forte, Stefano Giani, Tommaso Iranipour, Shayan Kassabov, Zahari Latorre, Jose, I Nocera, Emanuele R. Pearson, Rosalyn L. Rojo, Juan Stegeman, Roy Schwan, Christopher Ubiali, Maria Voisey, Cameron Wilson, Michael An open-source machine learning framework for global analyses of parton distributions |
author_sort |
Ball, Richard D. |
title |
An open-source machine learning framework for global analyses of parton distributions |
title_short |
An open-source machine learning framework for global analyses of parton distributions |
title_full |
An open-source machine learning framework for global analyses of parton distributions |
title_fullStr |
An open-source machine learning framework for global analyses of parton distributions |
title_full_unstemmed |
An open-source machine learning framework for global analyses of parton distributions |
title_sort |
open-source machine learning framework for global analyses of parton distributions |
publisher |
Springer Science and Business Media Deutschland GmbH |
publishDate |
2022 |
url |
https://scholarbank.nus.edu.sg/handle/10635/232387 |
_version_ |
1800915608916721664 |