An open-source machine learning framework for global analyses of parton distributions
10.1140/epjc/s10052-021-09747-9
Saved in:
Main Authors: | Ball, Richard D., Carrazza, Stefano, Cruz-Martinez, Juan, Del Debbio, Luigi, Forte, Stefano, Giani, Tommaso, Iranipour, Shayan, Kassabov, Zahari, Latorre, Jose, I, Nocera, Emanuele R., Pearson, Rosalyn L., Rojo, Juan, Stegeman, Roy, Schwan, Christopher, Ubiali, Maria, Voisey, Cameron, Wilson, Michael |
---|---|
Other Authors: | PHYSICS |
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2022
|
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/232387 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
Similar Items
-
Parton distributions for the LHC run II
by: Ball, R.D, et al.
Published: (2020) -
Parton distributions from high-precision collider data: NNPDF Collaboration
by: Ball, R.D, et al.
Published: (2020) -
An unbiased Hessian representation for Monte Carlo PDFs
by: Carrazza, S, et al.
Published: (2020) -
Parton branching model for pp» collisions
by: Chan, A.H., et al.
Published: (2014) -
Asymptotic solution to the QCD-parton branching equation
by: Chan, A.H., et al.
Published: (2014)