Mining product textual data for recommendation explanations
Recommendation explanations help to make sense of recommendations, increasing the likelihood of adoption. Here, we are interested in mining product textual data, an unstructured data type, coming from manufacturers, sellers, or consumers, appearing in many places including title, summary, descriptio...
Saved in:
主要作者: | LE TRUNG HOANG |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2022
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/etd_coll/450 https://ink.library.smu.edu.sg/context/etd_coll/article/1448/viewcontent/GPIS_AY2017_PhD_LE_Trung_Hoang.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Question-attentive review-level explanation for neural rating regression
由: LE, Trung Hoang, et al.
出版: (2024) -
Tagcloud-based explanation with feedback for recommender systems
由: Chen, W., et al.
出版: (2014) -
Aspect-guided syntax graph learning for explainable recommendation
由: Hu, Yidan, et al.
出版: (2023) -
Explanation guided contrastive learning for sequential recommendation
由: WANG, Lei, et al.
出版: (2022) -
Multi modal personalized explanation generation
由: Marantika, Winda Kirana
出版: (2024)