Robust learning with probabilistic relaxation using hypothesis-test-based sampling
In recent years, deep learning has been a vital tool in various tasks. The performance of a neural network is usually evaluated by empirical risk minimization. However, robustness issues have gained great concern which can be fatal in safety-critical applications. Adversarial training can mitigate t...
محفوظ في:
المؤلف الرئيسي: | WANG, Zilin |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/etd_coll/668 https://ink.library.smu.edu.sg/context/etd_coll/article/1666/viewcontent/GPIS_AY2022_MbR_Wang_Zilin.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Steganographic passport: an owner and user verifiable credential for deep model IP protection without retraining
بواسطة: Cui, Qi, وآخرون
منشور في: (2025) -
Reimagining education with AI
بواسطة: PAGANI, Margherita, وآخرون
منشور في: (2024) -
Mapping generative AI regulation in finance and bridging regulatory gaps
بواسطة: REMOLINA LEON, Nydia
منشور في: (2025) -
Understanding human-centred artificial intelligence in the banking sector
بواسطة: OBUCHETTIAR, Krishnaraj Arul, وآخرون
منشور في: (2023) -
Artificial intelligence (AI) ethics: Ethics of AI and ethical AI
بواسطة: SIAU, Keng, وآخرون
منشور في: (2020)